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Abstract
The nanocrystallization process, promoted in an amorphous alloy with nominal
composition Al89Nd7Ni4 by annealing (∼10 min) at temperatures between 480
and 530 K (primary crystallization interval), results in the development of a
distribution of primary nanocrystalline particles, with sizes below 10 nm. In
the initial steps the nanocrystallization process was found to be controlled by
nucleation and diffusion-controlled growth, which is then gradually slowed
down by the change in composition of the disordered matrix (soft impingement
regime). The kinetics of the process have been explored by the analysis of
differential scanning calorimetry (DSC) and x-ray diffraction (XRD) data. We
have used the master curve method, based on the isokinetic hypothesis, to
analyse the calorimetric data, and XRD patterns were used to estimate the
mean grain size in the nanocrystalline phase.

1. Introduction

Nanocrystalline materials have given rise to great interest in recent years, mainly due to the
improved properties they present with respect to conventionally structured materials [1–12],
including mechanical strength, toughness, corrosion and creep resistance. In most cases the
final properties critically depend on microstructural parameters [13] (grain size and shape,
size distribution), and consequently much effort has been devoted to microstructure control
techniques [14].

The present work is part of a study on the nanocrystallization process in Al-based
amorphous alloys obtained by melt spinning. Its aim is to investigate the mechanisms
controlling the primary crystallization in the Al89Nd7Ni4 amorphous alloy. This is a thermally
activated process that can be typically separated into two different steps: nucleation and
grain growth. In multicomponent systems, primary crystallization is usually controlled by
the diffusion of solute atoms, and is followed by the precipitation of intermetallic phases at
higher temperatures. In several Al-rich amorphous alloys, partial nanocrystallization of the
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α-Al phase can be promoted by annealing at relatively low temperatures (between 400 and
500 K). The result of this process is usually a dispersion of α-Al particles embedded in the
solute-rich amorphous phase.

The main contribution to fulfil this objective is the introduction of the recently developed
master curve method for the analysis of kinetic data. Previous studies on Al-based amorphous
alloys show that the as-prepared melt-spun samples can either contain quenched-in crystalline
embryos [8, 12], or present thermally activated nucleation. The growth of α-Al is diffusion
limited, and soft impingement very soon becomes the controlling mechanism [15]. One key
tool that may be used to obtain these results is the master curve method introduced for the
analysis of kinetic data [16]. In the present work such a method is further explored and
developed. A new representation, equivalent to the widely used Avrami plots, is proposed,
using only continuous heating DSC traces. The analysis is focused on the calorimetric data,
the procedure to obtain the master curve and the determination of the activation energy and
local Avrami exponent.

2. Experimental techniques

The analysed samples were kindly provided by Professor A Inoue, from Tohoku University,
Sendai. They were prepared by melt spinning from a melt with chemical composition
Al89Nd7Ni4. The resulting ribbons, less than 50 µm thick, were cut in small pieces in order
to improve thermal contact with the calorimeter.

The calorimetric measurements were performed using a Perkin-Elmer DSC7 calorimeter
in a pure Ar atmosphere. The thermal lag correction and temperature/enthalpy calibrations
were performed with standard In and Zn samples for each heating rate used (between 20 and
80 K min−1).

Structural information was acquired by x-ray diffraction (XRD) in a Phillips X’PERT
diffractometer with conventional Bragg–Brentano geometry, using monochromatic Cu Kα

radiation. Scans were taken over a 2θ angle range of 20◦–80◦, with a step of 0.03◦.
Samples explored by XRD after a heat treatment were prepared in the DSC7 calorimeter

using a heating rate of 80 K min−1.

3. Experimental results

3.1. X-ray diffraction

3.1.1. Grain size estimation. Grain size is a critical parameter for the properties of any
nanocrystalline material. We used conventional XRD data to estimate the mean grain size of the
primary phase on samples with different degrees of crystallization. Partial crystallization was
attained by previous annealing for 10 min at different temperatures. For a given temperature
(i.e., a given degree of nanocrystallization) the analysis proceeded as follows:

The experimental pattern obtained from an as-prepared sample, assumed to be fully
amorphous, is fitted by a polynomial function in the angular interval considered (usually
the 30◦–50◦ range in 2θ ). This numerical fit is then used to subtract the contribution of the
amorphous phase from the experimental pattern of the partially crystallized sample under
study. The pattern obtained after subtraction corresponds only to the nanocrystalline phase.

The resulting diffraction pattern is finally fitted using the Debye formula in discrete form
for the intensity of coherent scattering:

I (q) = f 2(q)
∑

i, j

sin
(
q · ri j

)

q · ri j
, (1)
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Figure 1. XRD patterns of an as-quenched Al89Nd7Ni4 ribbon (a), showing a broad peak at 38◦,
characteristic of amorphous alloys, and of a sample annealed at 573 K for 10 min (b), with the
indexing of α-Al peaks.

where

q = 4π

λ
sin(θ), (2)

f is the atomic scattering factor for Al atoms, ri j is the distance between atoms i and j , and the
sums are over all the Al atoms. This procedure can be applied due to the lack of orientation of
the nanocrystals, that allows us to apply equation (1) as if the sample was powder. To simplify
the calculations we assume that all grains are spherical and have the same size.

Since the contribution of the amorphous phase has already been subtracted from the
experimental pattern, the only fit parameter used in the simulations is the coherent scattering
domain size, or grain size, given by the number of atoms considered in equation (1).

3.1.2. XRD results. The XRD patterns obtained from as-quenched ribbons confirm that the
samples are amorphous, as shown by the typical broad halo in the diffraction pattern and the
absence of sharp crystalline peaks (see figure 1(a)).

After annealing for 10 min at 573 K, several peaks appear in the diffraction pattern. These
peaks have been identified as the first diffracting planes in the α-Al crystalline structure, which
is the primary phase in this alloy. As shown in figure 1(b), a considerable amount of amorphous
phase remains in the sample after primary crystallization. This amorphous phase is enriched in
Nd and Ni, since no phases other than the primary precipitate up to this temperature. The width
of the peaks suggests nanometric grain sizes in the primary phase. An exhaustive analysis of
this data, following the method described in section 3.1.1, supports this observation.

The analysed diffraction patterns were obtained from samples previously annealed for
10 min at 475, 485, 495 and 533 K. The calculated mean grain size in each sample is shown in
figure 2, where we can see that grain size stabilizes around 9–10 nm in the samples annealed
at the higher temperatures.
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Figure 2. Mean grain size, estimated from XRD and DSC data after 10 min annealing at different
temperatures, calculated as described in section 3.1.1. Annotated values of the transformed fraction
were estimated from the kinetic function.

3.2. Differential scanning calorimetry

3.2.1. Data analysis: master curve method. The purpose of this method is to isolate the
kinetic information that can be obtained from calorimetric data in continuous heating mode.
The method was devised to work with several datasets obtained at different heating rates. The
analysis of data obtained during linear heating is of great interest, especially in the initial stages
of crystallization, since in the isothermal mode some data are always lost in the time required
to reach the experimental temperature and system stabilization. In addition, analysis in the
linear heating mode is often faster than in the isothermal mode, making it more attractive for
industrial applications.

The analysis of DSC data has been widely used to obtain kinetic information of
crystallization reactions [17]. Most of these studies rely on the isokinetic hypothesis to separate
the kinetics of the transformation from its dependence on temperature, assuming that the
transformation rate can be described by a differential equation separable in α (transformed
fraction) and T (temperature). In the continuous heating regime:

dα

dT
= 1

β

K (T )

P(α)
, (3)

where β is the heating rate, K (T ) is frequently referred to as the rate constant, and P(α) is
the kinetic function, since it depends only on the transformation mechanisms and not on the
thermal path.

When dealing with primary crystallization, it is convenient to normalize α to the total
primary transformed fraction αp,

x ≡ α

αp
, (4)
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so by definition x = 1 when α = αp. Determining the value of αp is not necessary for the
present analysis, since x is the partial area under the primary peak in continuous heating mode:

x (T ) =
∫ Tend

Tonset

dQ
dt dT

S
, (5)

where Tonset and Tend are respectively the onset and end temperature of the primary
crystallization, S is the total area of the primary peak, and dQ

dt is the calorimetric signal.
Equation (3) can be written in integral form as

G(x) ≡
∫ x

0
P(x ′) dx ′ = 1

β

∫ T

T0

K (T ′) dT ′. (6)

As can be readily seen in this equation, G(x) does not depend on the thermal path if the
reaction is isokinetic. In thermally activated processes, the range of temperatures in which the
transformation proceeds is narrow enough to consider that K (T ) is Arrhenian, that is,

K (T ) = exp

(−Eap

kT

)
, (7)

where Eap is the apparent activation energy of primary crystallization and k is the Boltzmann
constant.

For any pair of heating rates βi and β j we can write, following equations (6) and (7),

1

βi

∫ Ti

T0

exp

(−Eap

kT ′

)
dT ′ = 1

β j

∫ Tj

T0

exp

(−Eap

kT ′

)
dT ′, (8)

where T0 is the room temperature. Equations (6) and (8) provide the basis for the development
of the master curve method. The goal is to obtain an ensemble of transformed datasets that
should be identical, i.e., independent of the heating rates under which they were obtained, when
equations (3) and (7) are satisfied. According to equation (8) one can transform a calorimetric
curve obtained at a given heating rate (βi) to another heating rate (β j), finding for every original
temperature Ti a transformed temperature Tj that maintains the equality. This transformation
ensures that the transformed fraction at the original and transformed temperatures is the same,
i.e., x(Ti; βi) = x(Tj; β j). This can be readily seen from equation (6): for a given degree
of crystallization, x , G(x) is determined. Moreover, the transformation rate dx

dT | j is obtained
through normalization by

dx

dT

∣∣∣∣
j

=
dx
dT

∣∣
i

Ci j
, (9)

where

Ci j =
∫ Tend

Tonset

dx

dT

∣∣∣∣
i

dTj , (10)

since
∫ Tend

Tonset

dx

dT

∣∣∣∣
k

dTk = 1, for k = i, j. (11)

The transformation shown in equation (8) can be applied to every experimental point in a
calorimetric curve to obtain an equivalent curve at another heating rate. One can change the
heating rate and transform all the experimental points of the calorimetric curve to obtain the
equivalent curve for the new heating rate. The method proceeds as follows.

First, we obtain the calorimetric data at different heating rates. In principle any number
of curves and heating rates can be used, but it is convenient to choose at least three different
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heating rates and two curves at each rate to improve statistics. The heating rates should not
differ too much, and should not be too high (say, higher than 80 K min−1), since the isokinetic
hypothesis implies that equilibrium is reached at each temperature during heating. The n heat
flow curves [ dQ

dt |i , Ti ; βi ]n are then converted to transformation rate curves [ dx
dT

∣∣
i
, Ti ; βi]n by

dividing the signal by the total area of the primary peak (see equation (5)).
Once the curves are prepared we obtain a first estimation of the apparent activation energy

using the Kissinger method [18]. Then we begin an iterative process with the activation energy
as a parameter, varying it in an interval around the first estimate. For each value of the activation
energy, all the experimental curves [ dx

dT

∣∣
i
, Ti ; βi ]n are transformed to equivalent heating rate

curves [ dx
dT

∣∣
j
, Tj ; β j ]n using equations (8) and (9).

The n transformed curves [ dx
dT

∣∣
j
, Tj ] for a fixed heating rate β j are then averaged, and

their dispersion with regard to the average curve [ dx
dT

∣∣
av

, Tav] calculated.
If all the previous assumptions hold, the transformed curves will overlap for some value

of the apparent activation energy. Obviously the overlap will not be perfect, but the iterative
method is designed to find the value of the apparent activation energy that gives the smallest
dispersion of the transformed curves with regard to the averaged curve, which we will call the
master curve [ dx

dT

∣∣
mc

, Tmc] at rate βmc.
This method provides at the same time a value of the apparent activation energy and

the kinetic function P(x). Since the master curve method works with all the points of the
calorimetric curves, this value of Eap is more reliable than the one obtained with the Kissinger
method [18], which considers only one point per curve. Nevertheless, it is worth mentioning
that the master curve method requires that equations (3) and (7) hold, as normally required for
the quantity Eap to have a physical meaning.

According to equation (3), P(x) is obtained from the master curve [ dx
dT , Tmc] by

P(x) = 1

βmc

[
dx

dT

]−1

mc

exp

(−Eap

kT ′

)
. (12)

Note that this result does not depend on our choice of the equivalent heating rate. One last
step to obtain the kinetic function consists of changing the temperature dependence of [ dx

dT ]mc

to a dependence on the transformed fraction x . This is done by inverting the x(T ) function,
that can be calculated by integration of the master curve.

This step allows us to isolate the dependence of the transformation rate on the transformed
fraction, making possible the study of the mechanisms controlling the transformation at any
temperature (or heating rate) within the isokinetic range. Both the kinetic function P(x) and
its integral G(x) can be compared to well established models, like the framework developed by
Kolmogorov, Johnson, Mehl and Avrami (KJMA) [19–23]. In this model, the kinetic function
can be written as

PKJMA(x) = P0
{− ln(1 − x)} 1−n

n

n(1 − x)
, (13)

and its integral

GKJMA(x) = P0{− ln(1 − x)} 1
n , (14)

where P0 is a characteristic time constant and n is the Avrami exponent. This last parameter
reflects the mechanisms involved in the transformation [24].

The values of the constants Eap and P0 can now be expressed in terms of the nucleation and
growth rates for the different growth mechanisms. We assume that the nucleation, interface-
controlled growth and effective diffusion rates follow Arrhenian laws,

I = I0 exp

(
− EI

kT

)
, (15)
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Figure 3. Heat flow during continuous heating of the Al89Nd7Ni4 sample at 60 K min−1. The
dashed line corresponds to an as-prepared sample, while the full line corresponds to a sample where
relaxation of the amorphous sample was promoted by previous heating up to 475 K.

Table 1. P−1
0 and Eap in terms of the nucleation frequency, the growth rate and the effective

diffusion coefficient, in the KJMA framework.

Avrami exponent n Eap P−1
0

Interface-controlled growth, constant nucleation 4
EI + 3Eu

4

{π

3
I0u3

0

} 1
4

Interface-controlled growth, pre-existing nucleia 3 Eu

{
4π

3
Nu3

0

} 1
3

Diffusion-controlled growth, constant nucleation 5/2
2EI + 3ED

5

{
8π

15
I0

} 2
5

{2D0} 3
5

Diffusion-controlled growth, pre-existing nucleia 3/2 ED

{
4π

3
N

} 2
3 {2D0}

a N : density of pre-existing nuclei.

u = u0 exp

(
− Eu

kT

)
, (16)

and

D = D0 exp

(
− ED

kT

)
, (17)

where I , u, and D are respectively the nucleation rate, interface-controlled growth rate, and
effective diffusion coefficient, EI, Eu and ED are the corresponding activation energies, and
I0, u0 and D0 are the corresponding pre-exponential factors. If we consider spherical particles
growing from negligible dimensions, the different values of n can be interpreted in terms of
crystallization mechanisms, as shown in table 1.

3.2.2. DSC results. Figure 3 shows the typical DSC signal obtained during continuous
heating of a sample of the Al89Nd7Ni4 amorphous alloy. Several features of the crystallization
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Figure 4. DSC curves corresponding to the primary crystallization, obtained at 20, 40, 60 and
80 K min−1, transformed to an equivalent heating rate of 40 K min−1 by the master curve method.

process can be appreciated in this figure. The first is a change in the baseline around 410 K,
with a negative shift of ∼0.2 W g−1. This change can be associated with relaxation in the
amorphous material, as suggested by the fact that previous heating up to 475 K (dashed line
in figure 3) removes this baseline shift without modifying the crystallization peak.

At 480 K primary crystallization begins. The peak is markedly asymmetric, as the
tail is much longer than the onset. This shape is characteristic of diffusion-controlled
growth [1, 7, 11]: solute atoms, rejected from the growing α-Al grains, build up near the
interfaces, forming a barrier that has to diffuse away to permit further growth.

The end of the primary crystallization peak overlaps with the beginning of the secondary
precipitation, separated in two sharp peaks.

We have performed the master curve analysis on continuous heating data obtained at
20, 40, 60 and 80 K min−1. Figure 4 shows the transformation rate curves obtained at
various heating rates (upper figure), and the transformed curves at an equivalent heating rate
of 40 K min−1, together with the master curve obtained by averaging them (bottom figure).
With this procedure, an apparent activation energy of 2.61 eV/atom was obtained. The initial
estimation of Eap, obtained by the Kissinger method, was 2.71 eV/atom. The good overlap
of the transformed curves supports the use of the isokinetic hypothesis.

Once the master curve has been calculated, we can extract the P(x) function in order to
study the kinetics of the primary crystallization. Figure 5 shows P(x), obtained by applying
equation (12) to the master curve shown with a bold line in the bottom graph of figure 4.

In order to compare the experimental P(x) function to the growth models described in
table 1, tentative fits of the asymptotic behaviour at the beginning and end of the transformation
with fixed values of the Avrami exponent are also plotted in the figure. The values used for
the asymptotic plots are shown in table 2.

Equivalently, we obtained by integration the experimental G(x) function (see
equation (6)), extrapolating to the onset of the transformation the asymptotic behaviour
observed experimentally for 5 × 10−3 � x � 5 × 10−2 (see table 2). The result is shown in
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Figure 5. Kinetic function obtained from continuous heating data (full line). Asymptotic behaviour
explored with the KJMA function (equation (13)): the initial asymptotic fit is valid up to x � 0.05,
and the final one is valid for x � 0.6.
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Figure 6. G(x) function obtained by integration of P(x) (full line). The dashed lines correspond
to the asymptotic fits of the P(x) function. The slope of the dashed lines is n (see equation (14)).

Table 2. Parameter values used in the asymptotic fits of the experimental P−1(x) function.

Range of fit P−1
0 (s−1) n

5 × 10−3 � x � 5 × 10−2 2.2 × 1025 2.1
6 × 10−1 � x � 9.55 × 10−1 5.0 × 1024 0.2

figure 6, which is equivalent to the widely used Avrami plots (plots of ln(− ln(1 − x)) versus
logarithm of isothermal time), but obtained from continuous heating data: here we use G(x)
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Figure 7. Low-fraction detail of the kinetic fuction, showing the transformed datasets at each
heating rate and the corresponding values of the Avrami exponent.

instead of time, but from equation (14) we can see that the slope of the plot is the Avrami
exponent.

In order to check the deviation of the transformed datasets with respect to the master
curve, we plotted the kinetic function P(x) obtained from the master curve and from each of
the transformed datasets. The result is shown in figure 7 for small fractions, the region where
the present study is focused. It is important to note that there is no systematic deviation of
the curves depending on heating rate, in agreement with the isokinetic hypothesis. There is
however an important deviation of the high heating rate curves with respect to the master curve.
This deviation can be evaluated by fitting the transformed datasets by an Avrami exponent, also
shown in the figure, and is a consequence of the instrumental error associated with the higher
heating rates. The figure shows clearly that the deviation is small for the curves obtained at
lower heating rates. In future applications of this method care will be taken to use datasets
obtained at heating rates below 40 K min−1.

4. Discussion

The experimental DSC and XRD results presented in this paper show that primary
crystallization in the Al89Nd7Ni4 amorphous alloy is a thermally activated process. We have
demonstrated that the isokinetic hypothesis is suitable for the analysis of the DSC data, and the
good overlap of the transformed curves is indicative of a constant apparent activation energy.
The value obtained for the apparent activation energy is 2.61 eV/atom.

Grain size estimations from XRD data (see figure 2) reveal that, as annealing temperature
increases from 475 to 495 K, grain size increases from 8 to 9 nm, for an annealing time of
10 min, and stabilizes around 10 nm above 500 K. The transformed fraction under isochronal
annealing may be evaluated from the value of G(x) plotted in figure 6, since from equation (6)
we have

G(x) = 1

β

∫ Tiso

T0

exp

(
− Eap

kT

)
dT + tiso · exp

(
− Eap

kTiso

)
, (18)
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Table 3. Values of x and G(x) after 10 min anneals, calculated from the kinetic function. Also
shown is the fraction transformed during heating (xh) and the corresponding equivalent isothermal
times (teq).

T (K) xh teq (s) G(x) (s) x

475 0.0005 5.8 1.26 × 10−25 0.50
485 0.009 6.0 4.68 × 10−25 0.69
495 0.1 6.2 1.65 × 10−24 0.81
533 0.8 7.0 1.30 × 10−22 0.97

where in this case β = 80 K min−1. The first term in the right-hand side of this equation
accounts for the heating ramp previous to isochronal annealing. Since G(x) was obtained
from P(x) we can calculate tiso(x) for a given temperature from equation (18), and since
tiso(x) is a monotonic function it can be inverted to obtain x(tiso). The value of G(x) obtained
for the heating ramp can be used to obtain the fraction transformed during heating, xh, and the
equivalent isothermal time teq, i.e., the time needed at the isothermal temperature to transform
the same fraction of sample that precipitates during the ramp.

Table 3 shows the estimated values of x and G(x) for 10 min isothermal anneals, at
the temperatures explored in section 3.1.2, together with the fraction transformed during
heating (xh) and the equivalent isothermal time (teq). As can be seen from the table, the
fraction transformed during heating is important at the higher temperatures: heating from
room temperature up to 533 K at 80 K min−1 promotes the precipitation of 80% of the final
volume occupied by the primary phase. If heating were instantaneous, this fraction would be
achieved in just 7 s of isothermal annealing at 533 K. These data may be compared to the grain
size estimations obtained from x-ray diffraction, and suggest that the mean grain size increase
observed between 475 and 500 K is mainly due to the crystallization fraction increase, whereas
it reaches saturation at the latest stages of the transformation.

Fits of the P(x) function obtained from DSC data (see figure 5) indicate that the initial
stages of the primary precipitation (for x � 0.05) can be described within the KJMA framework
with a kinetic exponent n = 2.1. Although the interpretation of this coefficient is not
straightforward, this value lies between 3/2 (diffusion-controlled growth of pre-existing grains)
and 5/2 (diffusion-controlled growth with constant nucleation rate), and can be identified with
grain growth controlled by diffusion combined with a decreasing nucleation rate. The process
has been modelled with a decreasing nucleation rate, Isoft, where nuclei have negligible critical
size, and a soft diffusion growth rate,

(
dR
dt

)
soft

, respectively of the form

Isoft = I0 exp

(
− EI

kT

)
· (1 − x) (19)

R

(
dR

dt

)

soft

= D0 exp

(
− ED

kT

)
· (1 − x), (20)

with 2EI+3ED
5 = Eap. These equations, though empirical, reproduce qualitatively the continuous

decay of both nucleation frequency (due to the decrease of supersaturation of the disordered
matrix) and the concentration gradient ahead of the interface (due to soft impingement between
grains). The kinetic function P(x) and the transformed fraction x are calculated using the
extended fraction, xext, through the following equations:

P−1(x) = β exp

(
Eap

kT

)
dx

dT
(21)

x = 1 − exp(−xext), (22)
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Figure 8. Comparison between the experimental kinetic function P(x) (full line) and the modelled
one (dashed line).

with

xext = 4π

3β

∫ T

T0

Isoft(T ′){R(T ′, T )}3 dT ′ (23)

{R(T ′, T )}2 = 1

β

∫ T

T ′
2D0 exp

(
− ED

kT ′′

)
(1 − x{T ′′}) dT ′′, (24)

and

dxext

dT
= 4π

β

∫ T

T0

Isoft(T ′){R(T ′, T )}2

(
dR

dt

)

soft
dT ′. (25)

The results of the calculation for { 8π
15 I0} 2

5 {2D0} 3
5 = 3.6 × 1025 s−1 are shown in figure 8.

A simple modelling of the decrease of both nucleation rate and effective diffusion in primary
crystallization, such as the one described above, is able to reduce the Avrami exponent at the
onset of the transformation, from the ideal value of 5/2 to values close to those observed
experimentally (∼2.1). Also, the experimental value of P0 (2.1 × 1025 s−1) is close to the
ideal one (3.6 × 1025 s−1). However, such a simple model does not reproduce the observed
behaviour for x � 2%. This is most probably due to the simplicity of the proposed model.

In the final stages of nanocrystallization (x � 0.6), the experimental kinetic function P(x)

may be approached by an Avrami function with n = 0.2. Values of this parameter smaller than
unity have been previously related to soft impingement processes [15], where grain growth
is kinetically slowed down, and eventually inhibited, by the change of concentration in the
untransformed region. This image is consistent with the data presented above: after an initial
growth stage controlled by hard diffusion, a solute barrier forms outside the interfaces due to
the rejection of solute atoms by the primary grains. From this moment, the limiting factor for
growth is the movement of that barrier, which, in turn, is affected by the mean concentration
of the amorphous matrix. Before geometric impingement between primary grains occurs, the
diffusion fields associated with these grains overlap, gradually slowing their growth. This
gradually decreasing growth rate is clearly shown by the long tails of the DSC curves obtained
in the continuous heating mode, as in figure 3. Due to this effect the mean grain size after
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primary crystallization barely reaches 10 nm, with nanocrystals embedded in a solute-enriched
amorphous matrix. As mentioned before, this kind of microstructure is attractive for several
applications.

No clear end of primary crystallization is observed, since the tail of the first DSC peak
overlaps with the onset of the second one. Further growth of primary particles, kinetically
inhibited by soft impingement, becomes possible again due to the change in the composition
of the matrix caused by the precipitation of new phases. This behaviour has been observed in
similar Al-based amorphous alloys.

The analysis of the nanocrystallization process in the Al89Nd7Ni4 alloy can be compared
with a recently published study of a similar alloy [16], with composition Al87Ni7Cu3Nd3. The
main compositional difference between both alloys is the presence of a small amount of Cu in
the latter. The master curve analysis applied to the Al87Ni7Cu3Nd3 alloy led to a significantly
lower value of the apparent activation energy of nanocrystallization: 1.09 eV/atom. The
onset temperature of nanocrystallization in this case was also lower, 400 K when heating at
60 K min−1, while in the present study this value is 480 K.

In the Al87Ni7Cu3Nd3 alloy, the main mechanism controlling primary crystallization was
found to be the diffusion-controlled growth of a high density (around 1017 grains cm−3) of pre-
existing grains, and no evidence of thermally activated nucleation was found. In the present
study the composition of the alloy is richer in Nd, poorer in Ni, and does not contain Cu,
but the preparation method was the same for both alloys. Consequently, differences in the
primary crystallization process can be attributed to the compositional changes. Experimental
evidence suggests that the high activation energy, together with the increase in the onset
temperature, reflect an additional energetic cost for the formation of the primary phase. The
activation energies of grain growth, associated with the diffusion of the solute atoms, can be
assumed to be similar in both alloys, maybe slightly higher in the present alloy due to the
higher concentration of the heaviest solute species, Nd. Therefore, the observed increase of
around 1.5 eV/atom in the apparent activation energy can be identified with thermally activated
nucleation. This conclusion suggests that a small amount of Cu can critically affect the rapid
solidification process, promoting the nucleation of primary grains during quenching.

5. Conclusions

The analysis of DSC data obtained during continuous heating in the temperature range
corresponding to primary crystallization was performed using the master curve method.
This analysis led to a value for the apparent activation energy of nanocrystallization, Eap =
2.61 eV/atom.

The method was also used to obtain the empirical kinetic function P(x), and its
integral G(x). These functions contain information on the nanocrystallization process. We
demonstrated that a very useful representation, equivalent to the Avrami plot, can be obtained
from continuous heating data using the G(x) function. The analysis of these functions within
the KJMA framework has provided us with some insight into the mechanisms controlling the
initial and final stages of primary crystallization: the process begins with the thermally activated
nucleation of α-Al nuclei, and the subsequent diffusion-controlled growth of these nuclei. The
growth rate is gradually slowed down by the overlap of the diffusion fields associated with
each of the growing grains, and the growth mode becomes controlled by this soft impingement.
The nanocrystals continue growing at a very slow rate, until the secondary phase precipitates.

Isothermal annealing for 10 min at several temperatures near the onset of primary
crystallization leads to a high density (1017 grains cm−3) of α-Al nanocrystals with mean
sizes below 10 nm, formed by nucleation and growth from the amorphous phase.
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